September 24, 2025

with special guest

Festival Hydre

Unlock Incentives for your Customers

AGENDA

10:00 - Welcome & Introductions

10:10 – Overview of Save on Energy

10:20 – Retrofit Program Examples

10:30 – Support from Enova and Festival Hydro

10:45 - Wrap-up Q&A

Feel free to ask questions at any point during the webinar!

Service Territories – Festival Hydro and Enova

Overview of Save on Energy Programs

Energy Efficiency Program Evolution

SAVE ON ENERGY

- ☐ Launched in 2011, continued today
 - 12-year funding agreement, 2025 2037
- ☐ Most cost-effective solution for building grid capacity
 - less than 3 ¢/kWh compared to 8 24 ¢/kWh
- ☐ For residential, small business, MUSH, C&I, first nations
 - must be connected to the IESO-controlled grid or LDC
- ☐ Incentives not rebates
 - apply before you buy new equipment

SAVE ON ENERGY PROGRAMS

□ For Business (non-residential)

- Expanded Energy Manager (EEM) Program
 - Strategic Energy Management (SEM) Program
- Energy Performance Program (EPP)
- Existing Building Commissioning (EBCx) Program
- Instant Discounts Program (for Lighting, Point of Sale)
- Retrofit Program FOCUS OF TODAY

RETROFIT PROGRAM – THE WORK HORSE

☐ Two Stage Application Process

- pre-project and post-project, all through online portal
- prescriptive and/or custom, whichever is better

☐ Incentives

- up to 50% of eligible project costs
- social housing and regional adders
- paid once project is complete

□ Participant Eligibility

non-residential or farm operation

RETROFIT PROGRAM REQUIREMENTS

□ Proof of Project Costs

- quote and invoice must have eligible costs itemized
- costs can be rolled up into one amount per category

Eligible Cost	Prescriptive	Custom
new equipment / materials	Υ	Υ
third party labour to install the new equipment	Υ	Υ
disposal / decommissioning of replaced equipment	Υ	Υ
energy audits not funded by the IESO		Υ
design, engineering and/or architecture		Υ
third party project management		Υ
equipment delivery and duties		Υ
inspections (eg. ESA, TSSA)		Υ
prepare and implement the Project M&V Plan		Υ

☐ Equipment Specsheets

make/model must match what's listed on quote and invoice

RETROFIT PROGRAM REQUIREMENTS

- ☐ Supporting Calculations for Custom Stream Applications
 - IESO Engineered Worksheets

Resources

- Top tips for a smooth application (pdf)
- QA/QC guidelines (pdf)
- Best practices for photo requirements (pdf)
- Pre-project application checklist (pdf)
- Post-project submission checklist (pdf)
- Sufficient vs. insufficient project quotes (pdf)
- Sufficient project invoice example (pdf)
- Understanding the Retrofit process infographic (pdf)

RETROFIT PROGRAM REQUIREMENTS

■ Minimum Incentive Thresholds

- Prescriptive = \$500 (less than \$10,000 for unplanned)
- Custom = \$1,500 (minimum 1 kW and/or 2,000 kWh)

□ Timelines

- submit application prior to purchase order
- incentive paid within 2 years of application pre-approval

□ Not Eligible Measures

- pilot or demonstration projects, unproven technology
- fuel switching (eg. gas furnace RTU to heat pump)

RETROFIT PROGRAM - PRESCRIPTIVE STREAM

☐ Think "Coupon"

- prescribed list of measures with specific requirements
- does not have to replace any previously existing equipment

□ Incentives

- per unit, varies depending on measure
- unplanned replacements of recently failed AC or VSD air compressor, non speed-modulating VFDs

□ Eligibility

- minimum efficiency requirements per measure
- listed in worksheets available online

RETROFIT PROGRAM - PRESCRIPTIVE STREAM

☐ Examples of Eligible Projects

- industrial energy management information system (NEW)
- computer room air conditioners (NEW)
- solar photovoltaic systems (NEW)
- fans, pumps, motors, variable speed drives
- *heat pumps*, chillers, HVAC, controls
- demand control ventilation
- injection moulding machines
- compressed air, refrigeration
- agribusiness

RETROFIT PROGRAM – CUSTOM STREAM

☐ Think "Calculated"

- efficiency case versus base case
- does not have to replace any previously existing equipment

□ Incentives

- \$1,800 per peak kW saved or \$0.20 per kWh saved
- for almost any equipment consuming electricity

□ Eligibility

 be projected to deliver savings for a minimum of 48 months from the project completion date

Retrofit Project Examples

☐ Cooling Tower Fans — Project Details

- 1 cooling tower with 3 x 50HP fans, 1 with VFD
- 1 cooling tower with 2 x 50HP fans, 1 with VFD
- added new VFDs to remaining 3 fans
- both cooling towers serve 1 condensed water system
- BAS sequences fans and match heat load
- weather dependant 24/7 operation

□ Cooling Tower Fans – Prescriptive Stream

- 3 VFDs x \$9,900 = \$29,700 incentive
- assumes operating 4,000 hours per year, 15.2 kW demand savings and 136,695 kWh energy savings

	Variable Frequency Drive (VFD) Incentives															
Motor Size on which VFD is installed (HP)	1	1.5	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100
Participant Incentive (\$/VFD)	\$210	\$300	\$420	\$600	\$1,050	\$1,500	\$2,040	\$3,000	\$3,900	\$5,100	\$6,000	\$7,800	\$9,900	\$11,700	\$14,700	\$19,500
Motor Size on which VFD is installed (HP)	125	150	200	250	300											
Participant Incentive (\$/VFD)	\$24,300	\$29,400	\$39,000	\$48,600	\$58,500											

□ Cooling Tower Fans – Custom Stream

- develop an annual hourly energy model based on BAS reports, weather and fan curves to estimate real energy usage
- 42.8 kW demand savings and 89,649 kWh energy savings
- $= $1,800 \times 42.8 \text{ kW} = $77,040 \text{ incentive}$

					VFD																		Efficient	Efficient
				SS Motor	Motor	Tower 1	Tower 2	Base Case	Base Case	Case	Case													
	Rel Hum	WetBulb	WetBulb	Output	Output	Cell 1	Cell 1	Cell 1	Cell 2	Cell 2	Cell 2	Cell 3	Cell 3	Cell 3	Cell 4	Cell 4	Cell 4	Cell 5	Cell 5	Cell 5	Power	Power	Power	Power
Temp (°C)	(%)	Tw (C)	Tw (F)	(BHP)	(BHP)	(VFD%)	BC BHP	EC BHP	Status	BC BHP	EC BHP	Status	BC BHP	EC BHP	Status	BC BHP	EC BHP	(VFD%)	BC BHP	EC BHP	(BHP)	(kW)	(BHP)	(kW)
28.1	53	21.2	70.1	46.6	15.0	100.0%	50.0	22.5	0	0.0	0.0	1	46.6	22.5	1	46.6	15.0	57.0%	28.5	15.0	171.6	135.5	75.1	59.2
24.1	73	20.5	68.9	46.3	13.2	100.0%	50.0	19.8	0	0.0	0.0	1	46.3	19.8	1	46.3	13.2	68.9%	34.5	13.2	177.2	139.9	66.1	52.2
22.9	74	19.5	67.1	46.0	11.2	100.0%	50.0	16.9	0	0.0	0.0	1	46.0	16.9	1	46.0	11.2	51.8%	25.9	11.2	167.9	132.5	56.2	44.4
21.5	84	19.5	67.1	46.0	11.2	100.0%	50.0	50.0	0	0.0	0.0	0	0.0	0.0	1	46.0	11.2	39.4%	19.7	11.2	115.7	91.3	72.4	57.1
20.9	82	18.6	65.6	45.7	10.0	100.0%	50.0	50.0	0	0.0	0.0	0	0.0	0.0	1	45.7	10.0	42.1%	21.1	10.0	116.8	92.2	70.1	55.3
19.9	87	18.3	64.9	45.6	9.7	100.0%	50.0	50.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	33.4%	16.7	16.7	66.7	52.7	66.7	52.7
20	86	18.3	64.9	45.6	9.6	100.0%	50.0	50.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	60.9%	30.5	30.5	80.5	63.5	80.5	63.5
19.7	85	17.9	64.1	45.4	9.2	100.0%	50.0	50.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	50.4%	25.2	25.2	75.2	59.4	75.2	59.4

☐ Air Compressor – Project Details

- 125HP fixed speed air compressor with integrated dryer
- air-cooled, oil injected, load/unload control
- 20 years old and in disrepair (leaking oil, air, etc)
- oversized and short cycling
- replace with variable speed option

☐ Air Compressor – Prescriptive Stream

- assumes operating 5,702 hours per year
- 26.1 kW demand savings and 148,822 kWh energy savings
- = \$24,480 incentive

Air Compressor Capacity (HP)		ve Rate per New Compressor
≥10	\$	1,560.00
≥15	\$	2,340.00
≥20	\$	3,120.00
≥25	\$	3,900.00
≥30	\$	4,680.00
≥40	S	6,240.00
≥50	\$	9,780.00
≥60	\$	11,740.00
≥75	\$	14,680.00
≥100	\$	19,580.00
≥125	\$	24,480.00
≥150	\$	29,360.00
≥200	\$	34,280.00

☐ Air Compressor – Custom Stream

- use engineered worksheet for VSD compressed air
- 13.6 kW demand savings and 136,539 kWh energy savings
- $= $1,800 \times 13.6 \text{ kW} = $27,308$

			NG PRESSUR	E					
100	Intended Compressor Operating Discharge Pressure (ps	ig)							
	FIXED SPEED COM	PRESSOR (CAGI DATA S	HEET	INPL	JTS)			
CAGI Data Sheet Field #	Description	Value	Units		140	Fixed Sp	eed Co	ompress	or
1 2	Manufacturer Model			d (kW)	120 100				. •
3 4	Rated Capacity at Full Load Operating Pressure: Full Load Operating Pressure	600 103	acfm psig	Demand	80	·			
10	Total Package Input Power at Zero Flow	71.0	kW	Power	40				
11	Total Package Input Power at Rated Capacity and Full Load Operating Pressure	117.0	kW	-	20				

		VSD COMPRES	SSOR (CAGI E	ATA SHEET I	NPL	JTS			
CAGI Data Sheet Field #	Description	Data In							
1	Manufacturer	anufacturer							
2	Model Number								
3	Rated Operating Pressure (psig)	175			120				
8	Input Power and Capacity	Input Power (kW)	Capacity (acfm)		Power Demand (kW)	100			
	Point 1 (Max)	109.5	601.0		man	60			
	Point 2	92.2	514.0		Del				
	Point 3	71.4	392.0		wer	40			
	Point 4	57.0	303.0		Ъ	20			
	Point 5	45.6	223.0			-			
	Point 6	36.4	164.0						
	Point 7								
	Point 8								
9	Total Package Input Power at Zero Flow	12.4							

Rated Pressure of VSD Compressor seems OK for Operating Pressure Requirements

□ Computer Room Air Conditioning – Project Details

- data centre adding 70kW of load
- existing cooling system not adequate
- new air-cooled refrigeration unit and premium condenser with free cooling economizer (pumped refrigerant system)

outside I inside

- □ Computer Room Air Conditioning Prescriptive Stream
 - = \$10,000 incentive
 - assumes operating 8,760 hours per year
 - 4.17 kW demand savings and 36,526 kWh energy savings

		Computer Room Air	r Conditioners (CRAC)				
Computer Room Air Conditioners (CRAC)	Net sensible Cooling Capacity	Configuration	Minimum SCOP Efficiency	Manufacturer Name/Model #	Quantity	Unit Participant Incentive	Total Participant Incentive
New installation or replacement of existing	<65,000 Btu/h	Downflow / Upflow	2.47			\$1,300	\$0
equipment with new high efficiency air- cooled CRACs exceeding the minimum	≥65,000 Btu/h and <240,000 Btu/h	Downflow / Upflow	2.35			\$4,500	\$0
efficiency levels	≥240,000 Btu/h and <760,000 Btu/h	Downflow / Upflow	2.12		1	\$10,000	\$10,000

□ Computer Room Air Conditioning – Custom Stream

- use manufacturer's simulation software to determine energy usage of standard unit versus free cooling unit
- 1 kW demand savings and 49,077 kWh energy savings
- $= $0.20 \times 49,077 = $9,815 incentive$

										, Dill Data											
Temperature Bins Deg F	below 5	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85-89	90-94	above 95	
Temperature Bins Deg C	below -15.0	-15.0 to -12.8	-12.2 to -10.0	-9.4 to -7.2	-6.7 to -4.4	-3.9 to -1.7	-1.1 to 1.1	1.7 to 3.9	4.4 ot 6.7	7.2 to 9.4	10.0 to 12.2	12.8 to 15.0	15.6 to 17.8	18.3 to 20.6	21.1 to 23.3	23.9 to 26.1	26.7 to 28.9	29.4 to 31.7	32.2 to 34.4	above 35	
Dry bulb hrs	148	167	263	368	337	592	890	859	519	684	697	754	761	516	601	363	178	44	17	2	
WB @ DB bin		6	11	16	20	25	30	35	39	43	48	53	57	61	64	66	69	71	74		
Ave Dew point	2	2	7	12	17	22	27	32	29	34	39	44	49	54	50	55	60	57	54	61	
Option 1	:	1 DS105AU			Air Cooled unit	4 Step		MCL110E8													Total
System kW load																					MW-Hr
Compressor kW	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.7	13.4	14.2	15.1	15.9	16.8	16.4	107.8
Evap Fan kW	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	17.2
Condenser kW	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.8	1.8	1.8	1.8	2.7	2.7	2.7	3.5	3.5	3.5	12.4
Humidifier kW	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.6	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.5
Free cooling pump kW	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
UPS & Distribution	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Total power consumed kW

SUPPORT FROM ENOVA AND FESTIVAL HYDRO

SUPPORT FROM ENOVA AND FESTIVAL HYDRO

- ☐ Energy Assessment & Project Development
 - your co-pilot
- ☐ Incentive Application Support
 - leverage our extensive experience
- ☐ Customer Reassurance
 - more than just moral support
- ☐ Connections to Other Funding
 - Enbridge, NRCan, water conservation authorities

