

FORM DG03 Request for a Connection Impact Assessment Review / Update To Connect Embedded Generation to Kitchener-Wilmot Hydro Inc.'s Electrical Distribution System

Please highlight in yellow any information below that has changed since previously providing the information.

Section 1: General Connection Information

Note: ALL of the information in "Section 1: General Connection Information" must be completed in full. Failure to provide complete information may delay the processing of the data.

All technical documents must be signed and sealed by a licensed Ontario Professional Engineer.

Da	te:			
1.	Project Name	:		
2.	Project Dates	Proposed Start of Construction:		
		Proposed In-Service:		
3.	Project Size:	Number of Units		
	·	Nameplate Rating of Each Unit	kW	
		Number of Phases (1 or 3)		
		Proposed Total Capacity	kW	
4.	Project Location	on: Address:		
5.	Kitchener-Wilı	mot Hydro Account Number (if applicat	le):	
6.	Project Inform	nation:		
	Project Devel	oper:		
	Company / Pe	rson:		
	Contact Perso	n:		
	Mailing Addre	ss:		
	Telephone Nu	mber:		
	Fax Number:			
	E-Mail:			

Project Owner (if not same as Project Developer:

Company / Person:		
Contact Person:		
Mailing Address:		
Telephone Number:		
Fax Number:		
E-Mail:		

Engineering Consultant (Electrical):

Company / Person:				
Contact Person:				
Mailing Address:				
Telephone Number	·. ·			
Fax Number:				
E-Mail:				
7. Project Type:				
] Wind Turbine	Hydraulic Turbine	Steam Turbine	Solar
] Diesel Engine	Gas Turbine	Fuel Cell	Biomass
] Co-generation/CH	IP (Combined Heat & Pow	ver)	
] Other (Please Spe	cify):		
8. Mode of Operation	:			
24 Hour or Base	Load] Peak Period Only	Load Displacement	Emergency Backup
Will Emergency Bac	kup generator be sy	nchronized to Kitchener-	-Wilmot Hydro Inc.'s system at	any time?
TYes	No 🗌 Ot	her (Please Specify):		
9. Intent of Generation	on:			
IESO FIT Program	m, Contract #		Net Metering	
Load Displacem	ient		Other (Please Specify):	

10. Location and Site Plan

Provide Site Plan with approximate line routings for connection to nearby Kitchener-Wilmot Hydro Inc. facilities. The Site Plan should include roads, concession and lot numbers and nearby power lines.

Drawing / Sketch No. Rev.

11. Proposed connection voltage to Kitchener-Wilmot Hydro Inc.'s distribution system (if known):

Section 2: Connection Impact Assessment Information

Note:

- (a) It is important that the Generator provide ALL the information requested below, if applicable. All information is required to complete the impact assessment process. Indicate "Not Applicable" where appropriate.
- (b) In certain circumstances, Kitchener-Wilmot Hydro Inc. may require additional information to conduct the Connection Impact Assessment. Should this be the case, the Generator will be duly advised.

Provide detailed and updated SLD of the EG facility including the interface point to the Kitchener-Wilmot Hydro Inc.'s distribution system. This drawing shall include as a minimum:

- Electrical equipment at EG's facilities, their principal ratings, impedances, winding configurations, neutral grounding methods, etc.
- Protective relaying, synchronizing and revenue metering arrangements. The device numbers should be in accordance with those adopted in the ANSI / IEEE Standard C37.2 1979: IEEE Standard Electrical Power System Device Function Numbers.

The SLD shall include the following, as applicable:

- Disconnecting device at the interface (connection) point with the Kitchener-Wilmot Hydro Inc.'s distribution system
- Load break switches
- Fuses
- Circuit breakers
- Interface step-up transformer
- Intermediate transformer(s)
- CT's and VT's (quantity, location, connection, ratio)
- Generators (rotating / static)
- Power factor correction capacitors and their switching arrangements (particularly for induction units)
- Motors

2.

- Power cables
- Surge arresters
- Any other relevant electrical equipment.

SLD Drawing Number: Rev.

Attached

Mailed Separately

1. Generator Facility Fault Contributions for Faults at the Interface Point/PCC

All values to be at the nominal connection voltage to Kitchener-Wilmot Hydro Inc.'s distribution system, i.e. the high voltage side of the Facility Interface (step-up) transformer.

Maximum Symmetrical (all generators online)

- Three-phase fault	kA		
- Phase-to-phase fault	kA		
- Single-Phase to ground fault	kA		
Generator Characteristics: a. Number of generating unit(s):			
b. Manufacturer / Type or Model No.		/	
c. Rated capacity of each unit			
Gross	kW		kVA
Net	kW		kVA

If unit outputs are different, please fill in additional sheets to provide the information.

d. Type of generating unit:

Synchronous	Induction	Static Power Converters (SPC) / Inverters	
Other (Please S	Specify)		
e. Rated frequency	Hz		
f. Number of phases	One Three		
g. For Synchronous l	Jnits:		
i) Generation volta	age kV		
ii) Rated current	A		
iii) Rated power fac	ctor of generating unit(s)	p.u.	
iv) Type and charad	cteristics of exciter		

v)	Minimum power limit for stable operation			
vi)	Unsaturated reactances on:			
	Direct axis synchronous reactance, Xd		kW	
	Direct axis transient reactance, Xd'	kVA base	kV base	
	Direct axis subtransient reactance, Xd"		p.u.	
	Negative sequence reactance, X2		p.u.	
	Zero sequence reactance, X0		p.u.	
vii)	Limits of range of reactive power			
	Lagging (over-excited)		kVAR	
	Leading (under-excited)		kVAR	
viii)	Provide a plot of generator capability curve (MW output vs. MVAR) Document Number:		Rev	
h. For	Induction Units:			
i)	Generation voltage		kV	
ii)	Rated design power factor		p.u.	
iii)	Rated speed		RPM	
iv)	Slip regulation interval		%	
v)	Rated Slip		%	
vi)	Actual power factor at delivery point (after p.f	correction):		
	- Full output		p.u.	
	- No output		p.u.	
vii)	Generator reactive power requirements:			
	- Full output		kVAR	
	- No output		kVAR	

viii) Total power factor correction installed		kVAR
	- Number of regulating steps		
	- Power factor correction switched per step		kVAR
	 Power factor correction capacitors are automatically switched off when generator breaker opens 	Yes	🗌 No
ix)	Starting inrush current limited to (multiple of full load current)		p.u.
x)	Locked rotor current (at rated voltage)		p.u.
xi)	Fault current vs. time curves (for various types of faults near the generator)		Dwg. No.
i. For	SPC / Inverter type units:		V
i)	Terminal voltage		
ii)	Line - interactive type (i.e. intended for parallel operation with electric utility)	Yes	No
iii)	Power factor		
iv)	Battery backup provided	Yes	No
v)	Maximum fault current for terminal faults		А
vi)	Standards according to which built		
vii)	Provide Manufacturer's technical brochure and specification sheet		Doc. No.

j. Kitchener-Wilmot Hydro Inc. uses distribution modeling software for Impact Assessments. Describe how your equipment should be modeled for load flow, voltage study and short circuit analysis.

3. Interface Step-up Transformer Characteristics:

a. Transformer rating						kVA
b. Manufacturer				_		
c. Nominal voltage of l	high voltage winding					kV
d. Lightning impulse le	evel of high voltage wi	nding, full wave				kV
e. Nominal voltage of	low voltage winding					kV
f. Number of phases						
g. Construction (core o	or shell)					
h. Number of legs						
i. Impedances on:		l	«VA base			kV base
	R:		o.u.	X:		p.u.
j. High voltage winding	g connection				🗌 Delta	Star
Grounding method	of star connected high	voltage winding	neutral			
Solid	Ungrounded	Impedance	e: R		_ X	ohms
k. Low voltage winding	g connection					
Grounding method	of star connected low v	voltage winding r	eutral			
Solid	Ungrounded	Impedance	e: R		_ X	ohms

I. Tapping range, locatic	n and type of tap ch	anger				
m. Expected tap setting	s HV	k	٢V	LV	-	kV
<u>Note:</u> The term 'High Vo generation or any	ltage' refers to the co other intermediate		e to LDC's	distribution	system and	'Low Voltage' refer
. Intermediate Transform	ner Characteristics ((if applicable):				
a. Transformer rating				_		kVA
b. Manufacturer						
c. Nominal voltage of hi	gh voltage winding					kV
d. Nominal voltage of lo	w voltage winding			-		kV
e. High voltage winding	connection			-	Delta	Star
Grounding method of	star connected high	voltage winding	neutral			_
Solid	Ungrounded	Impedance	e: R		Х	ohms
f. Low voltage winding o	connection				Delta	Star
Grounding method of	star connected low v	voltage winding r	neutral			
Solid	Ungrounded	Impedance	e: R		X	ohms
g. Impedances on:		I	kVA base			kV base
	R:		p.u.	X:		p.u.
h. Tapping range, locati	on and type of tap ch	nanger		-	_	
i. Expected tap settings	HV	k	۲V	LV	-	kV

<u>Note:</u> The term 'High Voltage' refers to the connection voltage to LDC's distribution system and 'Low Voltage' refers to the generation or any other intermediate voltage.

Note:

(a) The term "High Voltage", used above, refers to the intermediate voltage that is input to the interface step-up transformer, and "Low Voltage", used above, refers to the generation voltage.

5. Generating Facility Load Information

a. Maximum continuous load: kVA kW • Total: kVA kW • Generator Auxiliary Load Only: kVA kW b. Maximum start up load: ΗP kW c. Largest motor size that would be started: p.u. d. Maximum inrush current of the motor (multiple of full-load current): e. For load displacement generators: kVA kW • Max. present load at Generator's facility: kVA KW • Max. future load at Generator's facility (excluding Auxiliary Loads): • Indicate the means by which injection of power into Kitchener-Wilmot Hydro Inc.'s system will be prevented:

6. Operation Information:

- Annual Capacity Factor:
 %
- Prospective number of annual scheduled starts / stops, and timing:

7. Expected Monthly Generation, Consumption and Output From the Facility:

Expected	Total Generatior (a)	Generation		Total Internal Consumption (b)		Total Output (To Kitchener- Wilmot Hydro Inc.'s Distribution System) (a-b)*	
	kWh	Peak kWh	kWh	Peak kW	kWh	Peak kW	
January							
February							
March							
April							
Мау							
June							
July							
August							
September							
October							
November							
December							

* This value would be negative when the generators are not in operation or when the internal consumption exceeds generation.

8. Protection Design, Philosophy and Logic:

- Provide a document describing the protection philosophy for detecting and clearing:
 - Internal faults within the EG facility;
 - External phase and ground faults (in LDC's distribution system;
 - Certain abnormal system conditions such as over / under voltage, over / under frequency, open phase(s);
 - Islanding

Document Number: Rev.

Include a tripping matrix or similar information in the document

<u>Note:</u> EG shall install utility grade relays for the interface protection. The protection design shall incorporate facilities for testing and calibrating the relays by secondary injection.

Please do not feel inhibited by the space provided here. Use as much space and as many additional sheets as are required to describe how the Generator protection will deal with faults, outages, disturbances or other events on the distribution system and for the generator itself.

Protective Device	Range of Available Settings	Trip Time	Trip Set Point	Describe operation for disconnecting the generator or inverter in the event of a distribution system outage	Describe operation for disconnecting the generator or inverter in the event of a distribution system short circuit (three- phase and single-phase to ground)
27 Phase Undervoltage Instantaneous					
27 Phase Undervoltage					
50 Phase Instantaneous Overcurrent					
50G Ground Instantaneous Overcurrent					
51 Phase Time Overcurrent					
51G Ground Time Overcurrent					
50 Phase Overvoltage Instantaneous					
59 Phase Overvoltage					
81 Under Frequency					
81 Over Frequency					
87 Transformer Differential					
Other					

9. Connection and Operation Information:

- a. Synchronizing and paralleling scheme / procedure
- b. The generator is designed with auto-connection scheme

Doc. / Dwg. No.

🗌 No

🗌 Yes

10. Document List:

Item No.	Description	Reference No.	No. of Pages
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

11. Drawing List:

Item No.	Description	Reference No.	No. of Pages
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

12. Other Comments, Specifications and Exceptions (attach additional sheets if needed)

13. Applicant and Project Design / Engineering Signature

To the best of my knowledge, all the information provided in this Application Form is complete and correct.

Applicant Signature

Date

Project Design / Engineering Signature

Date

Return this form to: Kitchener-Wilmot Hydro Inc., 301 Victoria Street South, Kitchener, ON N2G 4L2. Attn: Shaun Wang, P.Eng., System Planning & Projects Engineer E-Mail: <u>swang @kwhydro.ca</u> Phone: (519) 745-4771 ext. 6312